文章出处: 广西南宁和飞网络技术有限公司 │ 点击次数:29845 │ 发表时间:2017-08-18 我要分享
逝、或当时看起来没有价值。
比如:在之前的大数据采集中,可能会漏掉潜在消费群的信息,忽略掉可能的销售机会。而尽可能采集更多更全面(哪怕是看起来不相关的数据,也可能内部存在一定的关联)的大数据,则有利于企业制定更精准的营销策略。
因此,数据湖泊的成立有赖于两个维度的拓展:上一节提到的垂直纵深数据的收集,以及更为广泛的全域数据的收集。
举个比较微观的例子:欧洲某大银行每年有650个直邮营销推广项目,发放将近6,000万封电子直邮,但是他们的营销效率却逐年下降。这家银行发现问题在于:虽然公司有不同的渠道接触客户,但是每个渠道都有自己的客户接触策略,这就造成客户资料和历史数据信息分散,没有形成客户关系的全貌。全域数据的缺失,使得公司无法根据客户特性来制定更为精准的个性化营销方案。
如今,媒介碎片化和人群移动化的趋势,使收集全域数据面临着新的挑战:如何收集移动数据?如何实现跨屏数据打通?如何搜集更多形式各异的非结构化数据?
对于第一个问题,目前的解决方案一般是尽最大可能覆盖更多的移动流量入口。再以搜狗搜索为例,不仅拥有移动端的QQ浏览器、搜狗浏览器、腾讯网、搜狐网等强势入口,2016年搜狗还与华为、三星、OPPO等大部分主流手机厂商达成合作。据悉,每天有超2亿台手机默认使用搜狗搜索。
在移动时代,人们不光在行为上呈现碎片化的特征,使用的设备也日趋丰富多元,这就带来了第二个问题:跨屏数据的收集。搜狗的无线端和PC端可以依托搜狗自有帐号体系、合作伙伴数据以及第三方数据,实现跨屏打通,进行无缝数据跟踪,在场景上将用户搜索、浏览和输入的跨屏数据进行融合,提供更有价值的投放依据。
目前,即使在非结构化数据的搜集上,也仅仅局限在文字、图片等简单表现形式上,但搜狗对于数据的搜集还跨越到了语音领域。2016年7月,搜狗推出知音引擎,不仅可以搜集语音数据,还可以进行理解和思考,进而提高语音识别准确率,再次丰富了数据搜集的类型。
更加细分的垂直化数据+跨屏多元化的全域数据,在源头上确保了数据的准确与全面;同时,借助人工智能日益增强的计算和分析能力,大数据将为企业决策提供更为精准的指引,使营销步入真正的智能时代。
热门文章
相关文章